Visual Recognition and Inference Using Dynamic Overcomplete Sparse Learning

نویسندگان

  • Joseph F. Murray
  • Kenneth Kreutz-Delgado
چکیده

We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Recognition , Inference and Coding Using Learned

of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii 1 Visual Recognition and Inference Using Overcomplete Sparse Learning . . . . . . . 1

متن کامل

Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition

Adaptive sparse coding methods learn a possibly overcomplete set of basis functions, such that natural image patches can be reconstructed by linearly combining a small subset of these bases. The applicability of these methods to visual object recognition tasks has been limited because of the prohibitive cost of the optimization algorithms required to compute the sparse representation. In this w...

متن کامل

Learning Sparse Overcomplete Codes for Images

Images can be coded accurately using a sparse set of vectors from a learned overcomplete dictionary, with potential applications in image compression and feature selection for pattern recognition. We present a survey of algorithms that perform dictionary learning and sparse coding and make three contributions. First, we compare our overcomplete dictionary learning algorithm (FOCUSS-CNDL) with o...

متن کامل

ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning

Independent Components Analysis (ICA) and its variants have been successfully used for unsupervised feature learning. However, standard ICA requires an orthonoramlity constraint to be enforced, which makes it difficult to learn overcomplete features. In addition, ICA is sensitive to whitening. These properties make it challenging to scale ICA to high dimensional data. In this paper, we propose ...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 2007